Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal.

نویسندگان

  • Xiaojuan Khoo
  • Paul Hamilton
  • George A O'Toole
  • Brian D Snyder
  • Daniel J Kenan
  • Mark W Grinstaff
چکیده

Appropriate surface chemistry between a material and its surrounding biological environment is crucial to the eventual integration and performance of any implant, whether metal, plastic, or ceramic. A robust peptide-based coating technology capable of easily modifying the surface of titanium (Ti) metal through noncovalent binding is described. A short peptide possessing affinity for Ti was identified using a phage display screening process and subjected to an amino acid substitution exercise using solid-phase chemical synthesis. Through these studies, the HKH tripeptide motif was elucidated as an important contributor to Ti binding within the Ti-binding peptide. This peptide spontaneously and selectively adsorbs onto a Ti surface from dilute aqueous solution with submicromolar binding affinities as determined by ELISA and quartz crystal microbalance with dissipation monitoring (QCM-D), through a process largely dominated by electrostatic interactions. Atomic force microscopy (AFM) reveals a densely packed peptide adlayer with an average height of approximately 0.5 nm. Subsequently, a PEGylated analogue of the peptide was shown to rapidly coat Ti to afford a nonfouling surface that efficiently blocked the adsorption of fibronectin and significantly reduced the extent of Staphylococcus aureus attachment and biofilm formation in vitro. These PEGylated-peptide coatings show promise in terms of resolving two major hurdles common to implanted metals: (i) nonspecific protein adsorption and (ii) bacterial colonization. At the same time, the facile one-step modification process will facilitate the point-of-care application of these coatings in the surgical suite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.

Bacterial infection associated with indwelling medical devices and implants is a major clinical issue, and the prevention or treatment of such infections is challenging. Antimicrobial coatings offer a significant step toward addressing this important clinical problem. Antimicrobial coatings based on tethered antimicrobial peptides (AMPs) on hydrophilic polymer brushes have been shown to be one ...

متن کامل

Decorative Titanium Nitride Colored Coatings on Bell-Metal by Reactive Cylindrical Magnetron Sputtering

The transition metal nitrides like titanium nitride exhibit very interesting color variation properties depending on the different plasma deposition conditions using cylindrical magnetron sputtering method. It is found in this deposition study that nitrogen partial pressure in the reactive gas discharge environment plays a significant role on the color variation of the film coatings on bell-met...

متن کامل

Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections.

Prevention of bacterial colonization and formation of a bacterial biofilm on implant surfaces has been a challenge in orthopaedic surgery. The treatment of implant-associated infections with conventional antibiotics has become more complicated by the emergence of multi-drug resistant bacteria. Antimicrobial eluting coatings on implants is one of the most promising strategies that have been atte...

متن کامل

Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly

OBJECTIVES The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the developm...

متن کامل

Biomimetic anchor for surface-initiated polymerization from metal substrates.

In this paper, we demonstrate the first use of a catecholic initiator for surface-initiated polymerization (SIP) from metal surfaces to create antifouling polymer coatings. A new bifunctional initiator inspired by mussel adhesive proteins was synthesized, which strongly adsorbs to Ti and 316L stainless steel (SS) substrates, providing an anchor for surface immobilization of grafted polymers. Su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 31  شماره 

صفحات  -

تاریخ انتشار 2009